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Abstract

Let H be the real algebra of quaternions, and let S3 be the set
of unit quaternions. For a, b  S3, define Ba,b(x) = axb for x  H.
We show that Ba,b is a product of an even number of reflections.
Let O(4) be the orthogonal group, and let PSp(2) be a projective
symplectic group. The results in this paper extend [2] wherein a group
homomorphism  : O(4)  PSp(2) is defined from the reflections of
S3. In this paper, we evaluate the dierential of .

1 Introduction

A quaternion has the form q = q1+iq2+jq3+kq4 where q1, q2, q3 and q4  R,
and i2 = j2 = k2 = ijk = 1. Let H be the set of all quaternions and let
q  H be given. Notice that H is isomorphic to R4 as real vector spaces,
that is, we look at q as q = [q1, q2, q3 ,q4]

T  R4. The conjugate of q is
q = q1 iq2 jq3kq4. The norm of q is ||q|| =


qq =


q21 + q

2
2 + q

2
3 + q

2
4.

If q = 0, the inverse of q is q1 = q
q2 . We call q a pure quaternion if

q1 = 0; q is called a unit quaternion if ||q|| = 1. Let p be a pure unit
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quaternion, then one checks that p2 = 1, so that p2n = (1)n and p2n+1 =
(1)np. Hence, for every   R, we have ep =


n=0

(p)n

n!
=


n=0
(p)2n

(2n)!
+


n=0

(p)(2n+1)

(2n+1)!
=


n=0
(1)n2n

(2n)!
+ p


n=0

(1)n2n+1

(2n+1)!
= cos + p sin. If

w  H, then ew = ea0+qt where a0 is the real part of w and qt is a pure
quaternion. If 0 = x  H, then x

x is a unit quaternion so that if qt = 0,

then ew = ea0eqt = ea0e
qt

qt
qt = ea0(cos qt + qt

qt
sin qt). Observe that

ei = cos 1+i sin 1, ej = cos 1+j sin 1, ei+j = cos

2+
i+j
2
sin

2 and eiej =

(cos 1+i sin 1)(cos 1+j sin 1) = cos2 1+j(cos 1 sin 1)+i(cos 1 sin 1)+k sin2 1.
Hence, ei+j = eiej . Moreover, one checks that eiej = ejei.
Let S3 be the set of all unit quaternions. Let Ba,b : H  H be given by

Ba,b(x) = axb where a, b  S3. Let G be the group of real linear transforma-
tion L : H H satisfying

L(e), L(d)1 = e, d1 = Re(ed)

where e and d  H. Notice that for x, y  H, we have Re(xy) = Re(yx).
Since Ba,b(e), Ba,b(d)1 = aeb, adb1 = Re((aeb)(adb)) = Re(aebb da) =

Re(aeda) = Re(ed) = e, d1, we have that Ba,b is a member of O(4). Looking
at e = e1+ e2i+ e3j+ e4k  H as a vector e = [e1 e2 e3 e4]T  R4, Re(ed) =
e, d


2
(the usual inner product), also we have L(e) = Ae, for some A 

M4(R). One checks that L(e), d1 =

Ae, d



2
=

e, AT d



2
. Hence, L  G

if and only if

Ae, Ad



2
=

e, ATAd



2
=

e, d


2
for every d, e  R4, that

is, if and only if A is a 4-by-4 real orthogonal matrix. Let O(4) be the group
of all 4-by-4 real orthogonal matrices. Then G as a group is isomorphic to
O(4). Let SO(4) be the subgroup of O(4) whose determinant is 1.
Let Sp(2) be the group of 2-by-2 matrices A M2(H) such that AA = I.

Then Sp(2) is a compact symplectic group, the quaternionic analogue of the
complex unitary group.
Let y  S3 be given. A reflection in S3 about a hyperplane in H perpen-

dicular to y is given by the linear mapping fy(x) = yxy = x  2Re(xy)y
[1], and is represented by the Householder matrix A = I  2yyT . Let l,m, n
and v  R be given. To y = l + im + jn + kv, we associate a quaternionic
matrix

Y =


il + jm+ kn v

v (il + jm+ kn)


. (1)
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One checks that Y is unitary (Y Y  = Y Y = I), that Y is skew-Hermitian
(Y  = Y ), and that Y 2 = I. Let PSp(2) = Sp(2)/(±I) be a projective
symplectic group. Every element of O(4) is a product of Householder ma-
trices [3, Theorem 1]. Hence, we say that O (4) is generated by the set of
reflections fy, so that the correspondence y  Y defined by equation (1) may
be extended to an injective group homomorphism  : O(4)  PSp(2) such
that (fy) = [Y ], the equivalence class of Y in PSp(2) [2]. The mapping 
may be shown to be continuous, and hence, dierentiable. We evaluate the
dierential of .

2 Quaternionic Matrices

Notice that Ba,b is an orthogonal transformation. If Re(a) = Re(b), then
there exists p  S3 such that ap = pb [1]. Moreover, because ||b|| = 1, we also
have b1 = b, so that Re(b1) = Re(b) as well. Hence, there exists q  S3,
such that aq = qb1. Let z = ap = pb, then Ba,b(x) = fap  fp(x) = fz  fp(x)
[1]. If Re(a) = Re(b), then we express Ba,b(x) as a product of two rotations
given byBa,b(x) = Ba,1B1,b(x). We express a as a power of a pure quaternion
s, say a = st where t  R. Then Bst,1(x) = Bs t2 ,s t2  Bs t2 ,st2 (x). Similarly,
we follow the same method to compute B1,b(x). Notice that each Ba,b(x) is
a product of two (or an even number of ) reflections. Hence, it is a member
of SO(4) because the determinant of reflection is 1.

We compute Bit,1(x), with t  R. Since Re(i
t) = Re(1), we write Bit,1(x)

as a product of two rotations given by Bit,1(x) = Bi
t
2 ,i

t
2
 B
i
t
2 ,i

t
2
(x). Now

we write each of B
i
t
2 ,i

t
2
and B

i
t
2 ,i

t
2
as a product of two reflections. The

real part of i
t
2 and i

t
2 are same. Observe that B

i
t
2 ,i

t
2
= f

i
t
2
 f1 and

B
i
t
2 ,i

t
2
= f

i
t
2 j
 fj . Hence Bit,1(x) = fi

t
2
 f1  fi

t
2 j
 fj .

If p  S3 is pure, then p = ep

2 and pt = ep


2
t = cos t

2
+ p sin t

2
. Hence,

i
t
2 = cos 

4
t + i sin 

4
t. Let y1 = i

t
2 . Then fy1 (refer to equation (1)) is

associated with

Y1(t) =


i cos 

4
t+ j sin 

4
t 0

0 (i cos 
4
t+ j sin 

4
t)


.
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Note that

Y 1(t) =


4


i sin 

4
t+ j cos 

4
t 0

0 i sin 
4
t j cos 

4
t


.

Let y2 = 1. Then fy2 is associated with

Y2(t) =


i 0
0 i


.

and ,
Y 2(t) = 0.

Let y3 = i
t
2 j. Then fy3 is associated with

Y3(t) =


k cos 

4
t sin 

4
t

 sin 
4
t k cos 

4
t


.

Thus

Y 3(t) =


4


k sin 

4
t cos 

4
t

 cos 
4
t k sin 

4
t


.

Let y4 = j. Then fy4 is associated with

Y4(t) =


k 0
0 k


,

and
Y 4(t) = 0.

We now compute the dierential d using the product rule without change
in the order of the factors.

d

dt


t=0

(Bit,1) =
d

dt


t=0

(f
i
t
2
 f1  fi

t
2 j
 fj)

=


d

dt


t=0

(f
i
t
2
)


(f1  fi

t
2 j
 fj)

+

f
i
t
2

 d
dt


t=0

(f1)





f
i
t
2 j
 fj



+

f
i
t
2
 f1

 d
dt


t=0

(f
i
t
2 j
)




fj


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+


f
i
t
2
 f1  fi

t
2 j


d

dt


t=0



fj



=


4
k


1 1
1 1



Similarly, we have

d

dt


t=0

(Bjt,1) = 


4
j


1 1
1 1


,

and
d

dt
|t=0(Bkt,1) =



4
i


1 1
1 1


.

We now calculate d
dt
|t=0(B1,it). We writeB1,i

t
2
(x) as a product of reflections.

B
1,i

t
2
(x) = B

i
t
2 i

t
2
 B

i
t
2 i

t
2
(x) = f

i
t
2 j
 fj  fi

t
2
 f1. Then we associate

each fy with respective Y and Y . Now, we have

d

dt
|t=0(B1,it) = 



4
k


1 1
1 1


.

Similarly,
d

dt
|t=0(B1,jt) = 



4
j


1 1
1 1


,

and
d

dt
|t=0(B1,kt) = 



4
i


1 1
1 1


.
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