Quaternions and Reflections in \mathbb{R}^4

Bimal Kunwor ^{*}, Dennis I. Merino [†], Edgar N. Reyes [‡], Gary L. Walls [§]

January 31, 2013

Abstract

Let \mathcal{H} be the real algebra of quaternions, and let S^3 be the set of unit quaternions. For $a, b \in S^3$, define $B_{a,b}(x) = axb$ for $x \in \mathcal{H}$. We show that $B_{a,b}$ is a product of an even number of reflections. Let O(4) be the orthogonal group, and let PSp(2) be a projective symplectic group. The results in this paper extend [2] wherein a group homomorphism $\xi : O(4) \to PSp(2)$ is defined from the reflections of S^3 . In this paper, we evaluate the differential of ξ .

1 Introduction

A quaternion has the form $q = q_1 + iq_2 + jq_3 + kq_4$ where q_1, q_2, q_3 and $q_4 \in \mathbb{R}$, and $i^2 = j^2 = k^2 = ijk = -1$. Let \mathcal{H} be the set of all quaternions and let $q \in \mathcal{H}$ be given. Notice that \mathcal{H} is isomorphic to \mathbb{R}^4 as real vector spaces, that is, we look at q as $\hat{q} = [q_1, q_2, q_3, q_4]^T \in \mathbb{R}^4$. The conjugate of q is $\bar{q} = q_1 - iq_2 - jq_3 - kq_4$. The norm of q is $||q|| = \sqrt{q\bar{q}} = \sqrt{q_1^2 + q_2^2 + q_3^2 + q_4^2}$. If $q \neq 0$, the inverse of q is $q^{-1} = \frac{\bar{q}}{||q||^2}$. We call q a pure quaternion if $q_1 = 0$; q is called a unit quaternion if ||q|| = 1. Let p be a pure unit

^{*}Department of Mathematics, Southeastern Louisiana University, Hammond, LA 70402-0687, USA; bimal.kunwar@selu.edu

[†]Department of Mathematics, Southeastern Louisiana University, Hammond, LA 70402-0687, USA; dmerino@selu.edu

[‡]Department of Mathematics, Southeastern Louisiana University, Hammond, LA 70402-0687, USA; ereyes@selu.edu

[§]Department of Mathematics, Southeastern Louisiana University, Hammond, LA 70402-0687, USA; gary.walls@selu.edu

quaternion, then one checks that $p^2 = -1$, so that $p^{2n} = (-1)^n$ and $p^{2n+1} = (-1)^n p$. Hence, for every $\alpha \in \mathbb{R}$, we have $e^{\alpha p} = \sum_{n=0}^{\infty} \frac{(\alpha p)^n}{n!} = \sum_{n=0}^{\infty} \frac{(\alpha p)^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{(\alpha p)^{(2n+1)}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n \alpha^{2n}}{(2n)!} + p \sum_{n=0}^{\infty} \frac{(-1)^n \alpha^{2n+1}}{(2n+1)!} = \cos \alpha + p \sin \alpha$. If $w \in \mathcal{H}$, then $e^w = e^{a_0+q_t}$ where a_0 is the real part of w and q_t is a pure quaternion. If $0 \neq x \in \mathcal{H}$, then $\frac{x}{\|x\|}$ is a unit quaternion so that if $q_t \neq 0$, then $e^w = e^{a_0}e^{q_t} = e^{a_0}e^{\|q_t\|\frac{q_t}{\|q_t\|}} = e^{a_0}(\cos \|q_t\| + \frac{q_t}{\|q_t\|} \sin \|q_t\|)$. Observe that $e^{\mathbf{i}} = \cos 1 + \mathbf{i} \sin 1$, $e^{\mathbf{j}} = \cos 1 + \mathbf{j} \sin 1$, $e^{\mathbf{i}+\mathbf{j}} = \cos \sqrt{2} + \frac{\mathbf{i}+\mathbf{j}}{\sqrt{2}} \sin \sqrt{2}$ and $e^{\mathbf{i}}e^{\mathbf{j}} = (\cos 1 + \mathbf{i} \sin 1)(\cos 1 + \mathbf{j} \sin 1) = \cos^2 1 + \mathbf{j}(\cos 1 \sin 1) + \mathbf{i}(\cos 1 \sin 1) + \mathbf{k} \sin^2 1$. Hence, $e^{\mathbf{i}+\mathbf{j}} \neq e^{\mathbf{i}}e^{\mathbf{j}}$. Moreover, one checks that $e^{\mathbf{i}}e^{\mathbf{j}} \neq e^{\mathbf{j}}e^{\mathbf{i}}$.

Let S^3 be the set of all unit quaternions. Let $B_{a,b}: \mathcal{H} \to \mathcal{H}$ be given by $B_{a,b}(x) = axb$ where $a, b \in S^3$. Let G be the group of real linear transformation $L: \mathcal{H} \to \mathcal{H}$ satisfying

$$\langle L(e), L(d) \rangle_1 = \langle e, d \rangle_1 = Re(e\overline{d})$$

where e and $d \in \mathcal{H}$. Notice that for $x, y \in \mathcal{H}$, we have Re(xy) = Re(yx). Since $\langle B_{a,b}(e), B_{a,b}(d) \rangle_1 = \langle aeb, adb \rangle_1 = Re((aeb)\overline{(adb)}) = Re(aeb\overline{b}\ \overline{d}\overline{a}) = Re(ae\overline{d}\overline{a}) = Re(e\overline{d}) = \langle e, d \rangle_1$, we have that $B_{a,b}$ is a member of O(4). Looking at $e = e_1 + e_2 \mathbf{i} + e_3 \mathbf{j} + e_4 \mathbf{k} \in \mathcal{H}$ as a vector $\hat{e} = [e_1 \ e_2 \ e_3 \ e_4]^T \in \mathbb{R}^4$, $Re(e\overline{d}) = \langle \hat{e}, \hat{d} \rangle_2$ (the usual inner product), also we have $L(e) = A\hat{e}$, for some $A \in M_4(\mathbb{R})$. One checks that $\langle L(e), d \rangle_1 = \langle A\hat{e}, \hat{d} \rangle_2 = \langle \hat{e}, A^T \hat{d} \rangle_2$. Hence, $L \in G$ if and only if $\langle A\hat{e}, A\hat{d} \rangle_2 = \langle \hat{e}, A^T A\hat{d} \rangle_2 = \langle \hat{e}, \hat{d} \rangle_2$ for every $\hat{d}, \hat{e} \in \mathbb{R}^4$, that is, if and only if A is a 4-by-4 real orthogonal matrix. Let O(4) be the group of all 4-by-4 real orthogonal matrices. Then G as a group is isomorphic to O(4). Let SO(4) be the subgroup of O(4) whose determinant is 1.

Let Sp(2) be the group of 2-by-2 matrices $A \in M_2(\mathcal{H})$ such that $AA^* = I$. Then Sp(2) is a compact symplectic group, the quaternionic analogue of the complex unitary group.

Let $y \in S^3$ be given. A reflection in S^3 about a hyperplane in \mathcal{H} perpendicular to y is given by the linear mapping $f_y(x) = -y\overline{x}y = x - 2\operatorname{Re}(x\overline{y})y$ [1], and is represented by the Householder matrix $A = I - 2\widehat{y}\widehat{y}^T$. Let l, m, n and $v \in \mathbb{R}$ be given. To y = l + im + jn + kv, we associate a quaternionic matrix

$$Y = \begin{pmatrix} il + jm + kn & v \\ -v & -(il + jm + kn) \end{pmatrix}.$$
 (1)

One checks that Y is unitary $(YY^* = Y^*Y = I)$, that Y is skew-Hermitian $(Y^* = -Y)$, and that $Y^2 = -I$. Let $PSp(2) = Sp(2)/(\pm I)$ be a projective symplectic group. Every element of O(4) is a product of Householder matrices [3, Theorem 1]. Hence, we say that O(4) is generated by the set of reflections f_y , so that the correspondence $y \mapsto Y$ defined by equation (1) may be extended to an injective group homomorphism $\xi : O(4) \to PSp(2)$ such that $\xi(f_y) = [Y]$, the equivalence class of Y in PSp(2) [2]. The mapping ξ may be shown to be continuous, and hence, differentiable. We evaluate the differential of ξ .

2 Quaternionic Matrices

Notice that $B_{a,b}$ is an orthogonal transformation. If Re(a) = Re(b), then there exists $p \in S^3$ such that ap = pb [1]. Moreover, because ||b|| = 1, we also have $b^{-1} = \overline{b}$, so that $Re(b^{-1}) = Re(b)$ as well. Hence, there exists $q \in S^3$, such that $aq = qb^{-1}$. Let z = ap = pb, then $B_{a,b}(x) = f_{ap} \circ f_p(x) = f_z \circ f_p(x)$ [1]. If $Re(a) \neq Re(b)$, then we express $B_{a,b}(x)$ as a product of two rotations given by $B_{a,b}(x) = B_{a,1} \circ B_{1,b}(x)$. We express a as a power of a pure quaternion s, say $a = s^t$ where $t \in \mathbb{R}$. Then $B_{s^t,1}(x) = B_{s\frac{t}{2},s\frac{t}{2}} \circ B_{s\frac{t}{2},s-\frac{t}{2}}(x)$. Similarly, we follow the same method to compute $B_{1,b}(x)$. Notice that each $B_{a,b}(x)$ is a product of two (or an even number of) reflections. Hence, it is a member of SO(4) because the determinant of reflection is -1.

We compute $B_{\boldsymbol{i}^{t},1}(x)$, with $t \in \mathbb{R}$. Since $Re(\boldsymbol{i}^{t}) \neq Re(1)$, we write $B_{\boldsymbol{i}^{t},1}(x)$ as a product of two rotations given by $B_{\boldsymbol{i}^{t},1}(x) = B_{\boldsymbol{i}^{\frac{t}{2}},\boldsymbol{i}^{\frac{t}{2}}} \circ B_{\boldsymbol{i}^{\frac{t}{2}},\boldsymbol{i}^{-\frac{t}{2}}}(x)$. Now we write each of $B_{\boldsymbol{i}^{\frac{t}{2}},\boldsymbol{i}^{\frac{t}{2}}}$ and $B_{\boldsymbol{i}^{\frac{t}{2}},\boldsymbol{i}^{-\frac{t}{2}}}$ as a product of two reflections. The real part of $\boldsymbol{i}^{\frac{t}{2}}$ and $\boldsymbol{i}^{-\frac{t}{2}}$ are same. Observe that $B_{\boldsymbol{i}^{\frac{t}{2}},\boldsymbol{i}^{\frac{t}{2}}} = f_{\boldsymbol{i}^{\frac{t}{2}}} \circ f_{1}$ and $B_{\boldsymbol{i}^{\frac{t}{2}},\boldsymbol{i}^{-\frac{t}{2}}} = f_{\boldsymbol{i}^{\frac{t}{2}}\boldsymbol{j}} \circ f_{\boldsymbol{j}}$. Hence $B_{\boldsymbol{i}^{t},1}(x) = f_{\boldsymbol{i}^{\frac{t}{2}}} \circ f_{1} \circ f_{\boldsymbol{i}^{\frac{t}{2}}} \circ f_{\boldsymbol{j}}$.

If $p \in S^3$ is pure, then $p = e^{p\frac{\pi}{2}}$ and $p^t = e^{p\frac{\pi}{2}t} = \cos\frac{\pi t}{2} + p\sin\frac{\pi t}{2}$. Hence, $\mathbf{i}^{\frac{t}{2}} = \cos\frac{\pi}{4}t + \mathbf{i}\sin\frac{\pi}{4}t$. Let $y_1 = \mathbf{i}^{\frac{t}{2}}$. Then f_{y_1} (refer to equation (1)) is associated with

$$Y_1(t) = \begin{pmatrix} \boldsymbol{i}\cos\frac{\pi}{4}t + \boldsymbol{j}\sin\frac{\pi}{4}t & 0\\ 0 & -(\boldsymbol{i}\cos\frac{\pi}{4}t + \boldsymbol{j}\sin\frac{\pi}{4}t) \end{pmatrix}.$$

Note that

$$Y_1'(t) = \frac{\pi}{4} \begin{pmatrix} -i\sin\frac{\pi}{4}t + j\cos\frac{\pi}{4}t & 0\\ 0 & i\sin\frac{\pi}{4}t - j\cos\frac{\pi}{4}t \end{pmatrix}.$$

Let $y_2 = 1$. Then f_{y_2} is associated with

$$Y_2(t) = egin{pmatrix} oldsymbol{i} & 0 \ 0 & -oldsymbol{i} \end{pmatrix}.$$

and ,

$$Y_2'(t) = 0.$$

Let $y_3 = i^{\frac{t}{2}} j$. Then f_{y_3} is associated with

$$Y_3(t) = \begin{pmatrix} \boldsymbol{k} \cos \frac{\pi}{4}t & \sin \frac{\pi}{4}t \\ -\sin \frac{\pi}{4}t & -\boldsymbol{k} \cos \frac{\pi}{4}t \end{pmatrix}.$$

Thus

$$Y_3'(t) = \frac{\pi}{4} \begin{pmatrix} -\boldsymbol{k}\sin\frac{\pi}{4}t & \cos\frac{\pi}{4}t \\ -\cos\frac{\pi}{4}t & \boldsymbol{k}\sin\frac{\pi}{4}t \end{pmatrix}.$$

Let $y_4 = \mathbf{j}$. Then f_{y_4} is associated with

$$Y_4(t) = \begin{pmatrix} m{k} & 0 \\ 0 & -m{k} \end{pmatrix},$$

 $\quad \text{and} \quad$

$$Y_4'(t) = 0.$$

We now compute the differential $\mathrm{d}\xi$ using the product rule without change in the order of the factors.

$$\begin{split} \frac{d}{dt} \Big|_{t=0} &\xi(B_{\boldsymbol{i}^{t},1}) &= \left. \frac{d}{dt} \right|_{t=0} \xi(f_{\boldsymbol{i}^{\frac{t}{2}}} \circ f_{1} \circ f_{\boldsymbol{i}^{\frac{t}{2}}} \boldsymbol{j} \circ f_{\boldsymbol{j}}) \\ &= \left[\frac{d}{dt} \Big|_{t=0} \xi(f_{\boldsymbol{i}^{\frac{t}{2}}}) \right] \xi(f_{1} \circ f_{\boldsymbol{i}^{\frac{t}{2}}} \boldsymbol{j} \circ f_{\boldsymbol{j}}) \\ &+ \xi \left(f_{\boldsymbol{i}^{\frac{t}{2}}} \right) \left[\frac{d}{dt} \Big|_{t=0} \xi(f_{1}) \right] \xi \left(f_{\boldsymbol{i}^{\frac{t}{2}}} \boldsymbol{j} \circ f_{\boldsymbol{j}} \right) \\ &+ \xi \left(f_{\boldsymbol{i}^{\frac{t}{2}}} \circ f_{1} \right) \left[\frac{d}{dt} \Big|_{t=0} \xi(f_{\boldsymbol{i}^{\frac{t}{2}}} \boldsymbol{j}) \right] \xi \left(f_{\boldsymbol{j}} \right) \end{split}$$

$$+\xi \left(f_{\boldsymbol{i}^{\frac{t}{2}}} \circ f_{1} \circ f_{\boldsymbol{i}^{\frac{t}{2}}} \boldsymbol{j} \right) \left[\frac{d}{dt} \Big|_{t=0} \xi \left(f_{\boldsymbol{j}} \right) \right]$$
$$= \frac{\pi}{4} \boldsymbol{k} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Similarly, we have

$$\frac{d}{dt}\Big|_{t=0} \xi(B_{\boldsymbol{j}^t,1}) = -\frac{\pi}{4} \boldsymbol{j} \begin{pmatrix} 1 & 1\\ 1 & 1 \end{pmatrix},$$

and

$$\frac{d}{dt}|_{t=0}\xi(B_{\boldsymbol{k}^{t},1}) = \frac{\pi}{4}\boldsymbol{i}\begin{pmatrix}1&1\\1&1\end{pmatrix}.$$

We now calculate $\frac{d}{dt}|_{t=0}\xi(B_{1,\boldsymbol{i}^{t}})$. We write $B_{1,\boldsymbol{i}^{\frac{t}{2}}}(x)$ as a product of reflections. $B_{1,\boldsymbol{i}^{\frac{t}{2}}}(x) = B_{\boldsymbol{i}^{-\frac{t}{2}}\boldsymbol{i}^{\frac{t}{2}}} \circ B_{\boldsymbol{i}^{\frac{t}{2}}\boldsymbol{i}^{\frac{t}{2}}}(x) = f_{\boldsymbol{i}^{-\frac{t}{2}}\boldsymbol{j}} \circ f_{\boldsymbol{j}} \circ f_{\boldsymbol{i}^{\frac{t}{2}}} \circ f_{1}$. Then we associate each f_{y} with respective Y and Y'. Now, we have

$$\frac{d}{dt}|_{t=0}\xi(B_{1,\boldsymbol{i}^{t}}) = -\frac{\pi}{4}\boldsymbol{k}\begin{pmatrix} 1 & -1\\ -1 & 1 \end{pmatrix}.$$

Similarly,

$$\frac{d}{dt}|_{t=0}\xi(B_{1,\boldsymbol{j}^{t}}) = -\frac{\pi}{4}\boldsymbol{j}\begin{pmatrix}1&-1\\-1&1\end{pmatrix},$$

and

$$\frac{d}{dt}|_{t=0}\xi(B_{1,\boldsymbol{k}^{t}}) = -\frac{\pi}{4}\boldsymbol{i}\begin{pmatrix}1&-1\\-1&1\end{pmatrix}.$$

References

- Coxeter, H.S.M., Quaternions and reflections, Amer. Math. Monthly, 53 (1946), 136–146.
- [2] Canlubo, C. and Reyes, E., Reflections on S³ and Quaternionic Möbius Transformations, J. Lie Theory, 22 (2012), 839-844.
- [3] F. Uhlig, Constructive ways for generating (generalized) real orthogonal matrices as products of (generalized) symmetries, *Linear Algebra Appl.*, 332–334 (2001) 459–467.