Quaternions and Reflections in \mathbb{R}^{4}

Bimal Kunwor ${ }^{*}$ Dennis I. Merino ${ }^{\dagger}$ Edgar N. Reyes $\xlongequal[\ddagger]{\ddagger}$ Gary L. Walls ${ }^{\S}$

January 31, 2013

Abstract

Let \mathcal{H} be the real algebra of quaternions, and let S^{3} be the set of unit quaternions. For $a, b \in S^{3}$, define $B_{a, b}(x)=a x b$ for $x \in \mathcal{H}$. We show that $B_{a, b}$ is a product of an even number of reflections. Let $O(4)$ be the orthogonal group, and let $\operatorname{PSp}(2)$ be a projective symplectic group. The results in this paper extend [2] wherein a group homomorphism $\xi: O(4) \rightarrow P S p(2)$ is defined from the reflections of S^{3}. In this paper, we evaluate the differential of ξ.

1 Introduction

A quaternion has the form $q=q_{1}+\boldsymbol{i} q_{2}+\boldsymbol{j} q_{3}+\boldsymbol{k} q_{4}$ where q_{1}, q_{2}, q_{3} and $q_{4} \in \mathbb{R}$, and $\boldsymbol{i}^{2}=\boldsymbol{j}^{2}=\boldsymbol{k}^{2}=\boldsymbol{i j} \boldsymbol{k}=-1$. Let \mathcal{H} be the set of all quaternions and let $q \in \mathcal{H}$ be given. Notice that \mathcal{H} is isomorphic to \mathbb{R}^{4} as real vector spaces, that is, we look at q as $\widehat{q}=\left[q_{1}, q_{2}, q_{3}, q_{4}\right]^{T} \in \mathbb{R}^{4}$. The conjugate of q is $\bar{q}=q_{1}-\boldsymbol{i} q_{2}-\boldsymbol{j} q_{3}-\boldsymbol{k} q_{4}$. The norm of q is $\|q\|=\sqrt{q \bar{q}}=\sqrt{q_{1}^{2}+q_{2}^{2}+q_{3}^{2}+q_{4}^{2}}$. If $q \neq 0$, the inverse of q is $q^{-1}=\frac{\bar{q}}{\|q\|^{2}}$. We call q a pure quaternion if $q_{1}=0 ; q$ is called a unit quaternion if $\|q\|=1$. Let p be a pure unit

[^0]quaternion, then one checks that $p^{2}=-1$, so that $p^{2 n}=(-1)^{n}$ and $p^{2 n+1}=$ $(-1)^{n} p$. Hence, for every $\alpha \in \mathbb{R}$, we have $e^{\alpha p}=\sum_{n=0}^{\infty} \frac{(\alpha p)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(\alpha p)^{2 n}}{(2 n)!}+$ $\sum_{n=0}^{\infty} \frac{(\alpha p)^{(2 n+1)}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} \alpha^{2 n}}{(2 n)!}+p \sum_{n=0}^{\infty} \frac{(-1)^{n} \alpha^{2 n+1}}{(2 n+1)!}=\cos \alpha+p \sin \alpha$. If $w \in \mathcal{H}$, then $e^{w}=e^{a_{0}+q_{t}}$ where a_{0} is the real part of w and q_{t} is a pure quaternion. If $0 \neq x \in \mathcal{H}$, then $\frac{x}{\|x\|}$ is a unit quaternion so that if $q_{t} \neq 0$, then $e^{w}=e^{a_{0}} e^{q_{t}}=e^{a_{0}} e^{\left\|q_{t}\right\| \frac{q_{t}}{\left\|q_{t}\right\|}}=e^{a_{0}}\left(\cos \left\|q_{t}\right\|+\frac{q_{t}}{\left\|q_{t}\right\|} \sin \left\|q_{t}\right\|\right)$. Observe that $e^{\boldsymbol{i}}=\cos 1+\boldsymbol{i} \sin 1, e^{\boldsymbol{j}}=\cos 1+\boldsymbol{j} \sin 1, e^{\boldsymbol{i}+\boldsymbol{j}}=\cos \sqrt{2}+\frac{\boldsymbol{i}+\boldsymbol{j}}{\sqrt{2}} \sin \sqrt{2}$ and $e^{\boldsymbol{i}}{ }_{e}^{\boldsymbol{j}}=$ $(\cos 1+\boldsymbol{i} \sin 1)(\cos 1+\boldsymbol{j} \sin 1)=\cos ^{2} 1+\boldsymbol{j}(\cos 1 \sin 1)+\boldsymbol{i}(\cos 1 \sin 1)+\boldsymbol{k} \sin ^{2} 1$. Hence, $e^{\boldsymbol{i}+\boldsymbol{j}} \neq e^{\boldsymbol{i}} e^{\boldsymbol{j}}$. Moreover, one checks that $e^{\boldsymbol{i}} \boldsymbol{j} \neq e^{\boldsymbol{j}} e^{\boldsymbol{i}}$.

Let S^{3} be the set of all unit quaternions. Let $B_{a, b}: \mathcal{H} \rightarrow \mathcal{H}$ be given by $B_{a, b}(x)=a x b$ where $a, b \in S^{3}$. Let G be the group of real linear transformation $L: \mathcal{H} \rightarrow \mathcal{H}$ satisfying

$$
\langle L(e), L(d)\rangle_{1}=\langle e, d\rangle_{1}=\operatorname{Re}(e \bar{d})
$$

where e and $d \in \mathcal{H}$. Notice that for $x, y \in \mathcal{H}$, we have $\operatorname{Re}(x y)=\operatorname{Re}(y x)$. Since $\left\langle B_{a, b}(e), B_{a, b}(d)\right\rangle_{1}=\langle a e b, a d b\rangle_{1}=\operatorname{Re}((a e b) \overline{(a d b)})=\operatorname{Re}(a e b \bar{b} \bar{d} \bar{a})=$ $\operatorname{Re}(a e \bar{d} \bar{a})=\operatorname{Re}(e \bar{d})=\langle e, d\rangle_{1}$, we have that $B_{a, b}$ is a member of $O(4)$. Looking at $e=e_{1}+e_{2} \boldsymbol{i}+e_{3} \boldsymbol{j}+e_{4} \boldsymbol{k} \in \mathcal{H}$ as a vector $\widehat{e}=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & e_{4}\end{array}\right]^{T} \in \mathbb{R}^{4}, \operatorname{Re}(e \bar{d})=$ $\langle\widehat{e}, \widehat{d}\rangle_{2}$ (the usual inner product), also we have $L(e)=A \widehat{e}$, for some $A \in$ $M_{4}(\mathbb{R})$. One checks that $\langle L(e), d\rangle_{1}=\langle A \widehat{e}, \hat{d}\rangle_{2}=\left\langle\hat{e}, A^{T} \hat{d}\right\rangle_{2}$. Hence, $L \in G$ if and only if $\langle A \widehat{e}, A \widehat{d}\rangle_{2}=\left\langle\widehat{e}, A^{T} A \widehat{d}\right\rangle_{2}=\langle\widehat{e}, \widehat{d}\rangle_{2}$ for every $\widehat{d}, \widehat{e} \in \mathbb{R}^{4}$, that is, if and only if A is a 4 -by- 4 real orthogonal matrix. Let $O(4)$ be the group of all 4-by-4 real orthogonal matrices. Then G as a group is isomorphic to $O(4)$. Let $S O(4)$ be the subgroup of $O(4)$ whose determinant is 1 .

Let $S p(2)$ be the group of 2-by-2 matrices $A \in M_{2}(\mathcal{H})$ such that $A A^{*}=I$. Then $S p(2)$ is a compact symplectic group, the quaternionic analogue of the complex unitary group.

Let $y \in S^{3}$ be given. A reflection in S^{3} about a hyperplane in \mathcal{H} perpendicular to y is given by the linear mapping $f_{y}(x)=-y \bar{x} y=x-2 \operatorname{Re}(x \bar{y}) y$ [1], and is represented by the Householder matrix $A=I-2 \widehat{y} \widehat{y}^{T}$. Let l, m, n and $v \in \mathbb{R}$ be given. To $y=l+\boldsymbol{i} m+\boldsymbol{j} n+\boldsymbol{k} v$, we associate a quaternionic matrix

$$
Y=\left(\begin{array}{cc}
\boldsymbol{i} l+\boldsymbol{j} m+\boldsymbol{k} n & v \tag{1}\\
-v & -(\boldsymbol{i} l+\boldsymbol{j} m+\boldsymbol{k} n)
\end{array}\right) .
$$

One checks that Y is unitary $\left(Y Y^{*}=Y^{*} Y=I\right)$, that Y is skew-Hermitian $\left(Y^{*}=-Y\right)$, and that $Y^{2}=-I$. Let $P S p(2)=S p(2) /(\pm I)$ be a projective symplectic group. Every element of $O(4)$ is a product of Householder matrices [3, Theorem 1]. Hence, we say that $O(4)$ is generated by the set of reflections f_{y}, so that the correspondence $y \mapsto Y$ defined by equation (1) may be extended to an injective group homomorphism $\xi: O(4) \rightarrow P S p(2)$ such that $\xi\left(f_{y}\right)=[Y]$, the equivalence class of Y in $\operatorname{PSp}(2)$ [2]. The mapping ξ may be shown to be continuous, and hence, differentiable. We evaluate the differential of ξ.

2 Quaternionic Matrices

Notice that $B_{a, b}$ is an orthogonal transformation. If $\operatorname{Re}(a)=\operatorname{Re}(b)$, then there exists $p \in S^{3}$ such that $a p=p b[1]$. Moreover, because $\|b\|=1$, we also have $b^{-1}=\bar{b}$, so that $\operatorname{Re}\left(b^{-1}\right)=\operatorname{Re}(b)$ as well. Hence, there exists $q \in S^{3}$, such that $a q=q b^{-1}$. Let $z=a p=p b$, then $B_{a, b}(x)=f_{a p} \circ f_{p}(x)=f_{z} \circ f_{p}(x)$ [1]. If $\operatorname{Re}(a) \neq \operatorname{Re}(b)$, then we express $B_{a, b}(x)$ as a product of two rotations given by $B_{a, b}(x)=B_{a, 1} \circ B_{1, b}(x)$. We express a as a power of a pure quaternion s, say $a=s^{t}$ where $t \in \mathbb{R}$. Then $B_{s^{t}, 1}(x)=B_{s^{\frac{t}{2}}, s^{\frac{t}{2}}} \circ B_{s^{\frac{t}{2}} s^{\frac{-t}{2}}}(x)$. Similarly, we follow the same method to compute $B_{1, b}(x)$. Notice that each $B_{a, b}(x)$ is a product of two (or an even number of) reflections. Hence, it is a member of $S O(4)$ because the determinant of reflection is -1 .

We compute $B_{\boldsymbol{i}^{t}, 1}(x)$, with $t \in \mathbb{R}$. Since $\operatorname{Re}\left(\boldsymbol{i}^{t}\right) \neq \operatorname{Re}(1)$, we write $B_{\boldsymbol{i}^{t}, 1}(x)$ as a product of two rotations given by $B_{\boldsymbol{i}_{, 1}^{t}}(x)=B_{\boldsymbol{i}^{\frac{t}{2}}, \boldsymbol{i}^{\frac{t}{2}}} \circ B_{\boldsymbol{i}^{\frac{t}{2}}, \boldsymbol{i}^{-\frac{t}{2}}}(x)$. Now we write each of $B_{\boldsymbol{i}^{\frac{t}{2}}, \boldsymbol{i}^{\frac{t}{2}}}$ and $B_{\boldsymbol{i}^{\frac{t}{2}}, \boldsymbol{i}^{\frac{-t}{2}}}$ as a product of two reflections. The real part of $\boldsymbol{i}^{\frac{t}{2}}$ and $\boldsymbol{i}^{\frac{-t}{2}}$ are same. Observe that $B_{\boldsymbol{i}^{\frac{t}{2}}, \boldsymbol{i}^{\frac{t}{2}}}=f_{\boldsymbol{i}^{\frac{t}{2}}} \circ f_{1}$ and $B_{\boldsymbol{i}^{\frac{t}{2}}, \boldsymbol{i}^{\frac{-t}{2}}}=f_{\boldsymbol{i}^{\frac{t}{2}} \boldsymbol{j}} \circ f_{\boldsymbol{j}}$. Hence $B_{\boldsymbol{i}^{t}, 1}(x)=f_{\boldsymbol{i}^{\frac{t}{2}}} \circ f_{1} \circ f_{\boldsymbol{i}^{\frac{t}{2}} \boldsymbol{j}} \circ f_{\boldsymbol{j}}$.

If $p \in S^{3}$ is pure, then $p=e^{p \frac{\pi}{2}}$ and $p^{t}=e^{p \frac{\pi}{2} t}=\cos \frac{\pi t}{2}+p \sin \frac{\pi t}{2}$. Hence, $\boldsymbol{i}^{\frac{t}{2}}=\cos \frac{\pi}{4} t+\boldsymbol{i} \sin \frac{\pi}{4} t$. Let $y_{1}=\boldsymbol{i}^{\frac{t}{2}}$. Then $f_{y_{1}}$ (refer to equation (1)) is associated with

$$
Y_{1}(t)=\left(\begin{array}{cc}
\boldsymbol{i} \cos \frac{\pi}{4} t+\boldsymbol{j} \sin \frac{\pi}{4} t & 0 \\
0 & -\left(\boldsymbol{i} \cos \frac{\pi}{4} t+\boldsymbol{j} \sin \frac{\pi}{4} t\right)
\end{array}\right) .
$$

Note that

$$
Y_{1}^{\prime}(t)=\frac{\pi}{4}\left(\begin{array}{cc}
-\boldsymbol{i} \sin \frac{\pi}{4} t+\boldsymbol{j} \cos \frac{\pi}{4} t & 0 \\
0 & \boldsymbol{i} \sin \frac{\pi}{4} t-\boldsymbol{j} \cos \frac{\pi}{4} t
\end{array}\right) .
$$

Let $y_{2}=1$. Then $f_{y_{2}}$ is associated with

$$
Y_{2}(t)=\left(\begin{array}{cc}
\boldsymbol{i} & 0 \\
0 & -\boldsymbol{i}
\end{array}\right) .
$$

and,

$$
Y_{2}^{\prime}(t)=0
$$

Let $y_{3}=\boldsymbol{i}^{\frac{t}{2}} \boldsymbol{j}$. Then $f_{y_{3}}$ is associated with

$$
Y_{3}(t)=\left(\begin{array}{cc}
\boldsymbol{k} \cos \frac{\pi}{4} t & \sin \frac{\pi}{4} t \\
-\sin \frac{\pi}{4} t & -\boldsymbol{k} \cos \frac{\pi}{4} t
\end{array}\right) .
$$

Thus

$$
Y_{3}^{\prime}(t)=\frac{\pi}{4}\left(\begin{array}{cc}
-\boldsymbol{k} \sin \frac{\pi}{4} t & \cos \frac{\pi}{4} t \\
-\cos \frac{\pi}{4} t & \boldsymbol{k} \sin \frac{\pi}{4} t
\end{array}\right) .
$$

Let $y_{4}=\boldsymbol{j}$. Then $f_{y_{4}}$ is associated with

$$
Y_{4}(t)=\left(\begin{array}{cc}
\boldsymbol{k} & 0 \\
0 & -\boldsymbol{k}
\end{array}\right)
$$

and

$$
Y_{4}^{\prime}(t)=0 .
$$

We now compute the differential $\mathrm{d} \xi$ using the product rule without change in the order of the factors.

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \xi\left(B_{\boldsymbol{i}_{, 1}^{t}}\right)= & \left.\frac{d}{d t}\right|_{t=0} \xi\left(f_{\boldsymbol{i}^{\frac{t}{2}}} \circ f_{1} \circ f_{\boldsymbol{i}^{\frac{t}{2}} \boldsymbol{j}} \circ f_{\boldsymbol{j}}\right) \\
= & {\left[\left.\frac{d}{d t}\right|_{t=0} \xi\left(f_{\boldsymbol{i}^{\frac{t}{2}}}\right)\right] \xi\left(f_{1} \circ f_{\boldsymbol{i}^{\frac{t}{2}} \boldsymbol{j}} \circ f_{\boldsymbol{j}}\right) } \\
& +\xi\left(f_{\boldsymbol{i}^{\frac{t}{2}}}\right)\left[\left.\frac{d}{d t}\right|_{t=0} \xi\left(f_{1}\right)\right] \xi\left(f_{\boldsymbol{i}^{\frac{t}{2}} \boldsymbol{j}} \circ f_{\boldsymbol{j}}\right) \\
& +\xi\left(f_{\boldsymbol{i}^{\frac{t}{2}}} \circ f_{1}\right)\left[\left.\frac{d}{d t}\right|_{t=0} \xi\left(f_{\boldsymbol{i}^{\frac{t}{2}} \boldsymbol{j}}\right)\right] \xi\left(f_{\boldsymbol{j}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\xi\left(f_{\boldsymbol{i}^{\frac{t}{2}}} \circ f_{1} \circ f_{\boldsymbol{i}^{\frac{t}{2}} \boldsymbol{j}}\right)\left[\left.\frac{d}{d t}\right|_{t=0} \xi\left(f_{\boldsymbol{j}}\right)\right] \\
= & \frac{\pi}{4} \boldsymbol{k}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

Similarly, we have

$$
\left.\frac{d}{d t}\right|_{t=0} \xi\left(B_{\boldsymbol{j}^{t}, 1}\right)=-\frac{\pi}{4} \boldsymbol{j}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

and

$$
\left.\frac{d}{d t}\right|_{t=0} \xi\left(B_{\boldsymbol{k}^{t}, 1}\right)=\frac{\pi}{4} \boldsymbol{i}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) .
$$

We now calculate $\left.\frac{d}{d t}\right|_{t=0} \xi\left(B_{1, \boldsymbol{i}^{t}}\right)$. We write $B_{1, \boldsymbol{i}^{\frac{t}{2}}}(x)$ as a product of reflections. $B_{1, \boldsymbol{i}^{\frac{t}{2}}}(x)=B_{\boldsymbol{i}^{-\frac{t}{2}} \boldsymbol{i}^{\frac{t}{2}}} \circ B_{\boldsymbol{i}^{\frac{t}{2}} \boldsymbol{i}^{\frac{t}{2}}}(x)=f_{\boldsymbol{i}^{-\frac{t}{2}} \boldsymbol{j}} \circ f_{\boldsymbol{j}} \circ f_{\boldsymbol{i}^{\frac{t}{2}}} \circ f_{1}$. Then we associate each f_{y} with respective Y and Y^{\prime}. Now, we have

$$
\left.\frac{d}{d t}\right|_{t=0} \xi\left(B_{1, \boldsymbol{i}^{t}}\right)=-\frac{\pi}{4} \boldsymbol{k}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

Similarly,

$$
\left.\frac{d}{d t}\right|_{t=0} \xi\left(B_{1, \boldsymbol{j}^{t}}\right)=-\frac{\pi}{4} \boldsymbol{j}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

and

$$
\left.\frac{d}{d t}\right|_{t=0} \xi\left(B_{1, \boldsymbol{k}^{t}}\right)=-\frac{\pi}{4} \boldsymbol{i}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

References

[1] Coxeter, H.S.M., Quaternions and reflections, Amer. Math. Monthly, 53 (1946), 136-146.
[2] Canlubo, C. and Reyes, E., Reflections on S^{3} and Quaternionic Möbius Transformations, J. Lie Theory, 22 (2012), 839-844.
[3] F. Uhlig, Constructive ways for generating (generalized) real orthogonal matrices as products of (generalized) symmetries, Linear Algebra Appl., 332-334 (2001) 459-467.

[^0]: *Department of Mathematics, Southeastern Louisiana University, Hammond, LA 70402-0687, USA; bimal.kunwar@selu.edu
 ${ }^{\dagger}$ Department of Mathematics, Southeastern Louisiana University, Hammond, LA 70402-0687, USA; dmerino@selu.edu
 ${ }^{\ddagger}$ Department of Mathematics, Southeastern Louisiana University, Hammond, LA 70402-0687, USA; ereyes@selu.edu
 ${ }^{\S}$ Department of Mathematics, Southeastern Louisiana University, Hammond, LA 70402-0687, USA; gary.walls@selu.edu

