Learning Objectives

In this section you will:

- Find exact values of the trigonometric functions secant, cosecant, tangent, and cotangent of $\frac{\pi}{3}, \frac{\pi}{4}$, and $\frac{\pi}{6}$.
- Use reference angles to evaluate the trigonometric functions secant, tangent, and cotangent.
- Use properties of even and odd trigonometric functions.
- Recognize and use fundamental identities.
- Evaluate trigonometric functions with a calculator.

Finding Exact Values

As with the sine and cosine, we can use the (x, y) coordinates to find the other functions.

ANGENT, SECANT, COSECANT, AND COTANGENT FUNCTIONS

If t is a real number and (x, y) is a point where the terminal side of an angle of t radians intercepts the unit circle, then
$\tan \mathrm{t}=\frac{y}{x^{\prime}}, x \neq 0 \quad \sec \mathrm{t}=\frac{1}{x^{\prime}}, x \neq 0$
$\csc t=\frac{1}{y}, y \neq 0 \quad \cot \mathrm{t}=\frac{x}{y}, y \neq 0$

Example Finding Trigonometric Functions from a Point on the Unit Circle

The point on the unit circle, as shown in Figure 2. Find $\sin t, \cos t, \tan t, \sec t, \csc t$, and $\cot t$.

Figure 2
Answer: $\sin t=\frac{1}{2}, \cos t=-\frac{\sqrt{3}}{2}, \tan t=\frac{\operatorname{Sin} t}{\operatorname{Cos} t}=\frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}}=-\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}}=-\frac{\sqrt{3}}{3}$.

$$
\operatorname{Csc} t=2(f l i p \sin t), \operatorname{Sec} t=-\frac{2}{\sqrt{3}}=-\frac{2 \sqrt{3}}{3}(f \operatorname{llip} \cos t), \operatorname{Cot} t=-\sqrt{3}(f \operatorname{llip} \tan t)
$$

Try It: The point $\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ is on the unit circle, as shown in Figure. Find $\sin t, \cos t, \tan t, \sec t, \csc t$, and $\cot t$.

Answer: $\sin t=-\frac{\sqrt{2}}{2}, \cos t=\frac{\sqrt{2}}{2}, \tan t=\frac{\sin t}{\cos t}=\frac{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=-1$.

$$
\operatorname{Csc} t=-\frac{1}{\sqrt{2}}(f \operatorname{lip} \sin t), \operatorname{Sec} t=\frac{1}{\sqrt{2}}(f \operatorname{lip} \sec t), \operatorname{Cot} t=-1(f \operatorname{lip} \tan t) .
$$

Example Finding the Trigonometric Functions of an Angle

Find $\sin t, \cos t, \tan t, \sec t, \csc t$, and $\cot t$ when $t=\pi / 6$.

$\operatorname{Sint}(\pi / 6)=\frac{1}{2}, \operatorname{Cos}(\pi / 6)=\frac{\sqrt{3}}{2}, \operatorname{Tan}(\pi / 6)=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$
$\operatorname{Csc}(\pi / 6)=2, \operatorname{Sec}(\pi / 6)=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}, \operatorname{Cot}(\pi / 6)=\sqrt{3}$.

Try It: Find $\sin t, \cos t, \tan t, \sec t, \csc t$, and $\cot t$ when $t=\frac{\pi}{3}$

$\operatorname{Sint}(\pi / 3)=\frac{\sqrt{3}}{2}, \operatorname{Cos}(\pi / 3)=\frac{1}{2}, \operatorname{Tan}(\pi / 3)=\sqrt{3}$.
$\operatorname{Csc}(\pi / 3)=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}, \operatorname{Sec}(\pi / 3)=2, \operatorname{Cot}(\pi / 3)=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.

Because we know the sine and cosine values for the common first-quadrant angles, we can find the other function values for those angles as well.

Angle	0	$\frac{\pi}{6}$, or 30°	$\frac{\pi}{4}$, or 45°	$\frac{\pi}{3}$, or 60°	$\frac{\pi}{2}$, or 90°
Cosine	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
Sine	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
Tangent	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Undefined
Secant	1	$\frac{2 \sqrt{3}}{3}$	$\sqrt{2}$	2	Undefined
Cosecant	Undefined	2	$\sqrt{2}$	$\frac{2 \sqrt{3}}{3}$	1
Cotangent	Undefined	$\sqrt{3}$	1	$\frac{\sqrt{3}}{2}$	0

Using Reference Angles to Evaluate Secant, Cosecant, and Cotangent

We can evaluate trigonometric functions of angles outside the first quadrant using reference angles as we have already done with the sine and cosine functions.

To help us remember which of the six trigonometric functions are positive in each quadrant, we can use the mnemonic phrase "A Smart Trig Class." Each of the four words in the phrase corresponds to one of the four quadrants, starting with quadrant I and rotating counterclockwise.
In quadrant I, which is "A," all of the six trigonometric functions are positive.
In quadrant II, "Smart," only sine and its reciprocal function, cosecant, are positive.
In quadrant III, "Trig," only tangent and its reciprocal function, cotangent, are positive.
Finally, in quadrant IV, "Class," only cosine and its reciprocal function, secant, are positive.

How To:

Given an angle not in the first quadrant, use reference angles to find all six trigonometric functions.

1. Measure the angle formed by the terminal side of the given angle and the horizontal axis. This is the reference angle.
2. Evaluate the function at the reference angle.
3. Observe the quadrant where the terminal side of the original angle is located. Based on the quadrant, determine whether the output is positive or negative.

Example Using Reference Angles to Find Trigonometric Functions

Use reference angles to find all six trigonometric functions of $5 \pi / 6$.
You can first convert $\frac{5 \pi}{6}$ into degrees first if your prefer. $\left(\frac{5 \pi}{6}\right.$

$$
\begin{aligned}
& \left.=150^{\circ}\right) \text {. Clearly, this lies in } 2 \text { nd quadrant. So the reference angle is } 180-150 \\
& =30^{\circ}\left(\pi-\frac{5 \pi}{6}=\frac{\pi}{6}\right)
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{Sin}\left(\frac{5 \pi}{6}\right)=\operatorname{Sin}\left(\frac{\pi}{6}\right)=\frac{1}{2}, \operatorname{Cos}\left(\frac{5 \pi}{6}\right)=-\operatorname{Cos}\left(\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2}, \operatorname{Tan}\left(\frac{5 \pi}{6}\right)=-\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}}=-\frac{\sqrt{3}}{3} . \\
\operatorname{Csc}\left(\frac{5 \pi}{6}\right)=2, \operatorname{Sec}\left(\frac{5 \pi}{6}\right)=-\frac{2}{\sqrt{3}}=-\frac{2 \sqrt{3}}{3}, \operatorname{Cot}\left(\frac{5 \pi}{6}\right)=-\sqrt{3} .
\end{gathered}
$$

Try It: Use reference angles to find all six trigonometric functions of $-\frac{7 \pi}{4}$.

$\frac{-7 \pi}{4}$ (315 degree) is a negative angle so we move clockwise direction. It lies in first quadrant (so all values will be positive), so the reference angle is $360-315=45^{\circ}$.

$$
\begin{gathered}
\operatorname{Sin}\left(\frac{-7 \pi}{4}\right)=\operatorname{Sin}\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}, \operatorname{Cos}\left(\frac{-7 \pi}{4}\right)=\operatorname{Cos}\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}, \operatorname{Tan}\left(\frac{-7 \pi}{4}\right)=1 . \\
\operatorname{Csc}\left(\frac{-7 \pi}{4}\right)=\sqrt{2}, \quad \operatorname{Sec}\left(\frac{-7 \pi}{4}\right)=\sqrt{2}, \quad \operatorname{Cot}\left(\frac{-7 \pi}{4}\right)=1 .
\end{gathered}
$$

Using Even and Odd Trig Functions

We can test whether a trigonometric function is even or odd by drawing a unit circle with a positive and a negative angle, as in the figure below. We can test each of the six trigonometric functions in this fashion. The results are shown in Table 2.

$\sin t=y$	$\cos t=x$	$\tan (t)=\frac{y}{x} y$
$\sin (-t)=-y$	$\cos (-t)=x$	$\tan (-t)=-\frac{y}{x}$
$\sin t \neq \sin (-t)$	$\cos t=\cos (-t)$	$\tan t \neq \tan (-t)$
$\sec t=\frac{1}{x}$	$\csc t=\frac{1}{y}$	$\cot t=\frac{x}{y}$
$\sec (-t)=\frac{1}{x}$	$\csc (-t)=\frac{1}{-y}$	$\cot (-t)=\frac{x}{-y}$
$\sec t=\sec (-t)$	$\csc t \neq \csc (-t)$	$\cot t \neq \cot (-t)$

Table 2

A GENERAL NOTE: EVEN AND ODD TRIGONOMETRIC FUNCTIONS

An even function is one in which $f(-x)=f(x)$.
An odd function is one in which $f(-x)=-f(x)$.
Cosine and secant are even:
$\cos (-t)=\cos t$
$\sec (-t)=\sec t$
Sine, tangent, cosecant, and cotangent are odd:
$\sin (-\mathrm{t})=-\sin \mathrm{t}$
Lecture notes developed under creative commons license using OpenStax Algebra and Trigonometry, Algebra and Trigonometry.
OpenStax CNX. May 18, 2016 http://cnx.org/contents/13ac107a-f15f-49d2-97e8-60ab2e3b519c@5.241
$\tan (-\mathrm{t})=-\tan \mathrm{t}$
$\csc (-t)=-\csc t$
$\cot (-\mathrm{t})=-\cot \mathrm{t}$

Example Using Even and Odd Properties of Trigonometric Functions
If the secant of angle t is 2 , what is the secant of $-t$?
Sect $(t)=2$ implies $\operatorname{Sec}(-t)=2$.

Try It: If the cotangent of angle t is $\sqrt{ } 3$, what is the cotangent of $-t$?
$\operatorname{Cot}(\mathrm{t})=\sqrt{3}$ implies $\operatorname{Cot}(-\mathrm{t})=-\sqrt{3}$

Recognizing and Using Fundamental Identities

Identities are statements that are true for all values of the input on which they are defined.

A GENERAL NOTE: FUNDAMENTAL IDENTITIES

We can derive some useful identities from the six trigonometric functions. The other four trigonometric functions can be related back to the sine and cosine functions using these basic relationships:

$$
\begin{gathered}
\tan t=\frac{\sin t}{\cos t} \\
\sec t=\frac{1}{\cos t} \\
\csc t=\frac{1}{\sin t} \\
\cot t=\frac{1}{\tan t}=\frac{\cos t}{\sin t}
\end{gathered}
$$

Example Using Identities to Simplify Trigonometric Expressions

Simplify $\frac{\text { sect. }}{\tan t}$

$$
\frac{\sec t}{\tan t}=\operatorname{Sec} t * \frac{1}{\tan t}=\frac{1}{\operatorname{Cos} t} * \frac{\operatorname{Cos} t}{\operatorname{Sin} t}=\frac{1}{\operatorname{Sin} t}=\operatorname{Csc} t .
$$

Try It: Simplify $(\tan t)(\cos t)$.
$\tan t \operatorname{Cos} t=\frac{\operatorname{Sin} t}{\operatorname{Cos} t} * \operatorname{Cos} t=\operatorname{Sin} t$

Example Using Identities to Evaluate Trigonometric Functions

Given $\cos (5 \pi / 6)=-\sqrt{ } 3 / 2$, evaluate $\sec (5 \pi / 6)$.
Cos and Sec are reciprocal of each other, so $\operatorname{Sec}\left(\frac{5 \pi}{6}\right)=-\frac{2}{\sqrt{3}}=-\frac{2}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}}=-\frac{2 \sqrt{3}}{3}$.

Example Using Identities to Evaluate Trigonometric Functions

Given $\sin \left(45^{\circ}\right)=\sqrt{ } 2 / 2, \cos \left(45^{\circ}\right)=\sqrt{ } 2 / 2$, evaluate $\tan \left(45^{\circ}\right)$.

$$
\operatorname{Tan}\left(45^{\circ}\right)=\frac{\operatorname{Sin} 45^{\circ}}{\operatorname{Cos} 45^{\circ}}=\frac{\sqrt{2} / 2}{\sqrt{2} / 2}=1 .
$$

Alternate forms of the Pythagorean Theorem

We can use these fundamental identities to derive alternative forms of the Pythagorean Identity.

PYTHAGOREAN IDENTITY

The Pythagorean Identity states that, for any real number t ,

$$
\cos ^{2} t+\sin ^{2} t=1
$$

ALTERNATE FORMS OF THE PYTHAGOREAN IDENTITY

$$
\begin{aligned}
& 1+\tan ^{2} \mathrm{t}=\sec ^{2} \mathrm{t} \\
& \cot ^{2} \mathrm{t}+1=\csc ^{2} \mathrm{t}
\end{aligned}
$$

Example Using Identities to Relate Trigonometric Functions

If $\cos (t)=12 / 13$ and t is in quadrant IV, as shown in Figure 8 , find the values of the other five trigonometric functions.


```
We use \(\cos ^{2} t+\sin ^{2} t=1\).
\(\left(\frac{12}{13}\right)^{2}+\operatorname{Sin}^{2}(t)=1\)
\(\frac{144}{169}+\operatorname{Sin}^{2}(t)=1\)
```

$\operatorname{Sin}^{2}(t)=1-\frac{144}{169}$
$\operatorname{Sin}^{2}(t)=\frac{169}{169}-\frac{144}{169}$
$\operatorname{Sin}^{2}(t)=\frac{169-144}{169}$.
$\operatorname{Sin}^{2}(t)=\frac{25}{144}$
$\operatorname{Sin}^{2}(t)= \pm \sqrt{\frac{25}{144}}= \pm \frac{5}{12}$
Since this is $4^{\text {th }}$ quadrant, $y=-\frac{5}{12}=\operatorname{Sin}(t)$.

$$
\begin{gathered}
\operatorname{Sin}(t)=-\frac{5}{12}, \quad \operatorname{Cos}(t)=\frac{12}{13}, \operatorname{Tan}(t)=\frac{-5 / 12}{12 / 13}=\frac{-5}{12} * \frac{12}{13}=\frac{-5}{12} \\
\operatorname{Csc}(t)=-\frac{12}{5}, \quad \operatorname{Sec}(t)=\frac{13}{12}, \quad \operatorname{Cot}(t)=-\frac{12}{5}
\end{gathered}
$$

Try It: If $\sec (\mathrm{t})=-\frac{17}{8}$ and $0<\mathrm{t}<\pi$, find the values of the other five functions.
$\operatorname{Sec}(\mathrm{t})$ and $\operatorname{Cos}(\mathrm{t})$ are reciprocal. $\operatorname{Cos}(t)=-\frac{8}{17}$. So the angle must lie in $2^{\text {nd }}$ quadrant because x is negative and $0<t<\pi$
We use $\cos ^{2} t+\sin ^{2} t=1$.
$\left(\frac{-8}{17}\right)^{2}+\operatorname{Sin}^{2}(t)=1$
$\frac{64}{289}+\operatorname{Sin}^{2}(t)=1$
$\operatorname{Sin}^{2}(t)=1-\frac{64}{289}$
$\operatorname{Sin}^{2}(t)=\frac{289}{289}-\frac{64}{289}$
$\operatorname{Sin}^{2}(t)=\frac{289-64}{289}$.
$\operatorname{Sin}^{2}(t)=\frac{264}{289}$
$\operatorname{Sin}(t)= \pm \sqrt{\frac{264}{289}}= \pm \frac{\sqrt{264}}{17}= \pm \frac{2 \sqrt{66}}{17}$
Since this is in $2^{\text {nd }}$ quadrant, we have $\operatorname{Sin}(t)=\frac{2 \sqrt{66}}{17}$

$$
\begin{gathered}
\operatorname{Sin}(t)=\frac{2 \sqrt{66}}{17}, \quad \operatorname{Cos}(t)=\frac{-8}{17}, \quad \operatorname{Tan}(t)=\frac{2 \sqrt{66} / 17}{-8 / 17}=-\frac{2 \sqrt{66}}{17} * \frac{17}{8}=\frac{-\sqrt{66}}{4} \\
\operatorname{Csc}(t)=\frac{17}{2 \sqrt{66}} * \frac{\sqrt{66}}{\sqrt{66}}=\frac{17 \sqrt{66}}{132}, \quad \operatorname{Sec}(t)=-\frac{17}{8}, \quad \operatorname{Cot}(t)=-\frac{4}{\sqrt{66}} * \frac{\sqrt{66}}{\sqrt{66}}=\frac{2 \sqrt{66}}{33} .
\end{gathered}
$$

A function that repeats its values in regular intervals is known as a periodic function. The trigonometric functions are periodic.

A period is the shortest interval over which a function completes one full cycle.

A GENERAL NOTE: PERIOD OF A FUNCTION

The period P of a repeating function f is the number representing the interval such that $f(x+P)=f(x)$ for any value of x.
The period of the cosine, sine, secant, and cosecant functions is 2π.
The period of the tangent and cotangent functions is π.

Example Finding the Values of Trigonometric Functions

Find the values of the six trigonometric functions of angle t based on Figure 9.

$$
\begin{aligned}
& \operatorname{Sin}(t)=-\frac{\sqrt{3}}{2}, \quad \operatorname{Cos}(t)=-\frac{1}{2}, \operatorname{Tan}(t)=\frac{-\sqrt{3} / 2}{-1 / 2}=-\frac{\sqrt{3}}{2} *-\frac{2}{1}=\sqrt{3} \\
& \operatorname{Csc}(t)=\frac{-2}{\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}}=-\frac{2 \sqrt{3}}{3}, \quad \operatorname{Sec}(t)=-2, \quad \operatorname{Cot}(t)=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} .
\end{aligned}
$$

Try It:
Find the values of the six trigonometric functions of angle t based on Figure.

$$
\begin{gathered}
\operatorname{Sin}(t)=-1, \quad \operatorname{Cos}(t)=0, \operatorname{Tan}(t)=\frac{-1}{0}=\text { undefined. } \\
\operatorname{Csc}(t)=-1, \quad \operatorname{Sec}(t)=\frac{1}{0}=\text { undefined }, \quad \operatorname{Cot}(t)=\frac{0}{-1}=0 .
\end{gathered}
$$

Example Finding the Value of Trigonometric Functions
If $\sin (t)=-\sqrt{ } 3 / 2$ and $\cos (t)=1 / 2$, find $\sec (t), \csc (t), \tan (t), \cot (t)$.

$$
\begin{aligned}
& \operatorname{Sec}(t)=\frac{1}{\operatorname{Cos}(t)}=2, \operatorname{Csc}(t)=\frac{1}{\operatorname{Sin}(t)}=\frac{2}{-\sqrt{3}} \\
& \operatorname{Tan}(t)=\frac{\operatorname{Sin}(t)}{\operatorname{Cos}(t)}=\frac{-\sqrt{3} / 2}{1 / 2}=\frac{-\sqrt{3}}{2} * \frac{2}{1}=-\sqrt{3}, \operatorname{Cot}(t)=\frac{1}{\operatorname{Tan}(t)}=\frac{1}{-\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}}=-\frac{\sqrt{3}}{3} .
\end{aligned}
$$

Evaluating Trig Functions with a Calculator

To evaluate trigonometric functions of other angles, we use a scientific or graphing calculator or computer software. If the calculator has a degree mode and a radian mode, confirm the correct mode is chosen before making a calculation.

For the reciprocal functions, there may not be any dedicated keys that say CSC, SEC, or COT. In that case, the function must be evaluated as the reciprocal of a sine, cosine, or tangent.

How To:

Given an angle measure in radians, use a calculator to find the cosecant.

1. If the calculator has degree mode and radian mode, set it to radian mode.
2. Enter: $1 /$
3. Press the SIN key.
4. Enter the value of the angle inside parentheses.
5. Press the $=[$ ENTER $]$ key.

Example Evaluating Using Technology

Evaluate the cosecant of $\frac{5 \pi}{7}$
Evaluate $\sec \left(125^{\circ}\right)$

Evaluate the $\tan \left(312^{\circ}\right)$

Try It: Evauate the cotangent of $-\frac{\pi}{8}$

Use the table to find the EXACT value.			
1. $\csc 135^{\circ}$	2. $\sin \pi$	3. $\cot \left(-\frac{11 \pi}{6}\right)$	4. $\sec \left(-90^{\circ}\right)$
5. $\sin 315^{\circ}$	$\text { 6. } \sin \frac{7 \pi}{6}$	7. $\tan 765^{\circ}$	8. $\cot -\frac{19 \pi}{6}$
9. $\csc -135^{\circ}$	10. $\cos -900^{\circ}$	11. $\sec -690^{\circ}$	12. $\tan \frac{11 \pi}{6}$
Use the calculator to find the APPROXIMATE value of each.			
13. $\csc 80^{\circ}$	14. $\cot 15^{\circ}$	15. $\sec 40^{\circ}$	16. $\sin 51^{\circ}$
$\text { 17. } \sin \frac{\pi}{18}$	18. $\tan \frac{7 \pi}{18}$	19. $\cot \frac{23 \pi}{90}$	$\text { 20. } \cot \frac{\pi}{5}$
21. $\csc \frac{\pi}{18}$	22. $\sec 115^{\circ}$	23. $\csc \frac{5 \pi}{18}$	24. $\sin 1.2$
Use the table to find each angle where $0^{\circ} \leq \boldsymbol{\theta} \leq \mathbf{3 6 0}^{\circ}$.			
$\text { 25. } \cos \theta=-\frac{1}{2}$	$\text { 26. } \csc \theta=\frac{2 \sqrt{3}}{3}$	27. $\tan \theta=$ undefined	28. $\sin \theta=-\frac{\sqrt{2}}{2}$
29. $\csc \theta=1$	30. $\sec \theta=\sqrt{2}$	31. $\tan \theta=0$	32. $\sin \theta=0$

