Learning Objectives

In this section you will:

- Use right triangles to evaluate trigonometric functions.
- Use the definitions of trigonometric functions of any angle.
- Use right-triangle trigonometry to solve applied problems.

The adjacent side is the side closest to the angle, x. (Adjacent means "next to.")
The opposite side is the side across from the angle, y.
The hypotenuse is the side of the triangle opposite the right angle, 1.

How To:
Given the side lengths of a right triangle and one of the acute angles, find the sine, cosine, and tangent of that angle.

1. Find the sine as the ratio of the opposite side to the hypotenuse.
2. Find the cosine as the ratio of the adjacent side to the hypotenuse.
3. Find the tangent as the ratio of the opposite side to the adjacent side.

Example Evaluating a Trigonometric Function of a Right Triangle

Given the triangle shown in Figure 3, find the value of $\tan \alpha$.

Figure 3
Example: Given the triangle, find the value of $\sin t, \cos t, \& \tan t$.

Example: Given the triangle, find the value of $\sin t, \cos t, \& \tan t$.

Example Evaluating a Trigonometric Function of a Right Triangle

Given the triangle shown below, find the value of $\cos A$.

Reciprocal Functions

In addition to sine, cosine, and tangent, there are three more functions. These functions are the reciprocals of the first three functions.

Secant	$\sec t=$	$\sin t=\frac{1}{\csc t}$	$\csc t=\frac{1}{\sin t}$
Cosecant	$\csc t=$	$\cos t=\frac{1}{\sec t}$	$\sec t=\frac{1}{\cos t}$
Cotangent	$\cot t=$	$\tan t=\frac{1}{\cot t}$	$\cot t=\frac{1}{\tan t}$

Many problems ask for all six trigonometric functions for a given angle in a triangle. A possible strategy to use is to find the sine, cosine, and tangent of the angles first. Then, find the other trigonometric functions easily using the reciprocals.

How To:

Given the side lengths of a right triangle, evaluate the six trigonometric functions of one of the acute angles.

1. If needed, draw the right triangle and label the angle provided.
2. Identify the angle, the adjacent side, the side opposite the angle, and the hypotenuse of the right triangle.
3. Find the required function:

- sine as the ratio of the opposite side to the hypotenuse
- cosine as the ratio of the adjacent side to the hypotenuse
- tangent as the ratio of the opposite side to the adjacent side
- secant as the ratio of the hypotenuse to the adjacent side
- cosecant as the ratio of the hypotenuse to the opposite side
- cotangent as the ratio of the adjacent side to the opposite side

Example Evaluating Trigonometric Functions of Angles Not in Standard Position

Using the triangle shown in Figure 6, evaluate $\sin \alpha, \cos \alpha, \tan \alpha, \sec \alpha, \csc \alpha$, and $\cot \alpha$.

Figure 6

Try It:

Using the triangle shown in Figure, evaluate $\sin t, \cos t, \tan t, \sec t, \csc t$, and $\cot t$.

Example Evaluating a Trigonometric Function of a Right Triangle

Using the triangle shown below, find $\sin A, \cos A, \tan A, \sec A, \csc A$, and $\cot A$.

10

Using Trigonometric Functions

How To:
Given a right triangle, the length of one side, and the measure of one acute angle, find the remaining sides.

1. For each side, select the trigonometric function that has the unknown side as either the numerator or the denominator. The known side will in turn be the denominator or the numerator.
2. Write an equation setting the function value of the known angle equal to the ratio of the corresponding sides.
3. Using the value of the trigonometric function and the known side length, solve for the missing side length.

Be aware: To find the cosine and sine of angles other than the special angles, we turn to a computer or calculator.
Most calculators can be set into "degree" or "radian" mode, which tells the calculator the units for the input value.

Example Finding Missing Side Lengths Using Trigonometric Ratios

Find the unknown sides of the triangle in Figure 11.

Try It: A right triangle has one angle of $\frac{\pi}{3}$ and a hypotenuse of 20 . Find the unknown sides and angle of the triangle.

Suppose $c=13, A=34.7$. Find a, b, and B

Example Finding Missing Side Lengths Using Trigonometric Ratios
Find x.

Example Finding Missing Side Lengths Using Trigonometric Ratios

Find x.

Using Right Triangle Trigonometry to Solve Applied Problems

The angle of \qquad of an object above an observer relative to the observer is the angle between the horizontal and the line from the object to the observer's eye. The angle of \qquad of an object below an observer relative to the observer is the angle between the horizontal and the line from the object to the observer's eye.

These right triangles created have sides that represent the unknown height, the measured distance from the base, and the angled line of sight from the ground to the top of the object. Knowing the measured distance to the base of the object and the angle of the line of sight, we can use trigonometric functions to calculate the unknown height.

How To:

Given a tall object, measure its height indirectly.

1. Make a sketch of the problem situation to keep track of known and unknown information.
2. Lay out a measured distance from the base of the object to a point where the top of the object is clearly visible.
3. At the other end of the measured distance, look up to the top of the object. Measure the angle the line of sight makes with the horizontal.
4. Write an equation relating the unknown height, the measured distance, and the tangent of the angle of the line of sight.
5. Solve the equation for the unknown height.

Example Measuring a Height Indirectly

A 30 -ft ladder leans against a building so that the angle between the ground and the ladder is 84°. How high does the ladder reach on the building?

The angle of elevation to top of a Building in New York is found to be 9 degrees from the ground at a distance of 1 mile from the base of the building. Using this information, find the height of the building. Round to the tenths. Hint 1 mile=5280 feet.

A radio tower is located 400 feet from a building. From window in the building, a person determines that the angle of elevation to the top of the tower is 28° and the angle of depression to the bottom of the tower is 22°. How tall is the tower?

A survey team is trying to estimate the height of a mountain above a level pain. From one point on the plain, they observe that the angle of elevation to the top of the mountain is 26°. From a point 2000 feet closer to the mountain along the plain, they find that the angle of elevation is 28°. How high (in feet) is the mountain?

Practice Probelms

To find the height of a tree, a person walks to a point 30 feet from the base of the tree. She measures an angle of 57° between a line of sight to the top of the tree and the ground, as shown in Figure 13. Find the height of the tree.

Lecture notes developed under creative commons license using OpenStax Algebra and Trigonometry, Algebra and Trigonometry. OpenStax CNX. May 18, 2016 http://cnx.org/contents/13ac107a-f15f-49d2-97e8-60ab2e3b519c@5.241

Try It: How long a ladder is needed to reach a windowsill 50 feet above the ground if the ladder rests against the building making an angle of $\frac{5 \pi}{12}$ with the ground? Round to the nearest foot.

Example Measuring a Distance Indirectly

A 400-foot tall monument is located in the distance. From a window in a building, a person determines that the angle of elevation to the top of the monument is 18°, and that the angle of depression to the bottom of the tower is 3°. How far is the person from the monument?

Find the value of the trig functi	ated.	
1. $\sin \alpha=$ $\tan \beta=$	2. $\tan \theta=$	3. $\cos \beta=$
Find the measure of the indicated side. Round to the nearest hundredth.		
4.	5.	6. Given $\triangle D E F$ where $\angle D$ is a right angle. Find f if $m \angle E=16^{\circ}$ and $e=4$. (Draw a picture!)
Find the measure of the indicated angle. Round to the nearest hundredth.		
7.	8.	9. Given $\triangle D E F$ where $\angle D$ is a right angle. Find $m \angle E$ if $e=11.7$ and $f=8$. (Draw a picture!)
Solve each triangle. Round to the nearest hundredth.		
10.	11.	12. Given $\triangle D E F$ where $\angle D$ is a right angle and $m \angle F=35^{\circ}$ and $d=16$. (Draw a picture!)

Label the picture given and then solve it. If no picture is given, draw your own and solve!
13. The angle of depression is measured from the top of a 43 ft tower to a reference point on the ground. Its value is found to be 63°. How far is the base of the tower from the point on the ground?

15. A closed circuit TV camera is mounted on a wall 7.4 ft above a security desk in an office building. It is used to view an entrance door 9.3 ft from the desk. Find the angle of depression from the camera lens to the entrance door.

17. The angle of elevation from the bottom of the world's largest slide located in Peru, Vermont, is approximately 10.3°. The slide has a vertical drop of 821 ft . Find the length of the slide.
14. The entrance of the old town library is 2.3 ft above ground level. A ramp from the ground level to the library entrance is scheduled to be built. The angle of elevation form the base of the ramp to its top is to be 15°. Find the length of the ramp
16. A jet took off at a rate of $260 \mathrm{ft} / \mathrm{s}$ and climbed in a straight path for 3.2 min . What was the angle of ele vation of its path if its final altitude was $12,000 \mathrm{ft}$?
18. The extension ladder on top of a 6 ft high hook and ladder truck is 150 ft long. If the angle of elevation of the ladder is 70°, to what height on a building will the ladder reach?

