River Parishes Community College

Math 1100: College Algebra
Quadratic Functions

5.1 Quadratic Functions and Parabolas

Semester
Fall/Spring Year--

Department
Physical Science: Math

Learning Objectives

In this section, you will learn:
\& Recognize characteristics of parabolas
\& Undertstand how the graph of a parabola is related to its quadratic function
\$ Determine minimum or maximum value (turning points) in a quadratic function's
\& Solve problems involving a quadratic function's minimum or maximum value

1 Quadratic Equation

A quadratic equation is a polynomial equation with degree two. In other words, it is an equation of the form

$$
a x^{2}+b x+c=0
$$

where a, b and c are real numbers and $a \neq 0$.The graph of a quadratic function is a U-shaped graph and is called Parabolas.

Examples of Quadratic equation

a. $x^{2}-1=0$
b. $3 x^{2}+5 x+2=10$
c. $x^{2}=4$
d. $\frac{3}{2} x^{2}+7 x=5$

Examples of Non-Quadratic eunction

a. $f(x, y)=3 x+2 y$ function of two Variables
b. $0=3+2 x$ The highest exponent (degree/power) is not 2
c. $0=\sqrt{x}+2$ radical (fractional) exponents.
d. $0=\frac{2}{x}+3$ Variable in denominator
e. $x^{3}+3 x^{2}+9=0$ Third degree equation

2 Quadratic Forms

1. Standard (General) From

$$
y=a x^{2}+b x+c
$$

eg

$$
y=2 x^{2}+4 x-6
$$

2. Vertex Form

$$
y=a(x-h)^{2}+k
$$

eg

$$
y=2(x+1)^{2}-8
$$

3. Factor Form

$$
y=a(x-p)(x-q)
$$

eg

$$
y=2(x+3)(x-1)
$$

If $a>0$, i.e a is positive, parabola opens up.
if $a<0$, i.e a is negative, parabola opens down.

3 Key Features of Quadratic function

1. Vertex

All quadratic have a minimum or maximum point which is also the turning point of the parabola. It is called the vertex of the parabola. The coordinates can be found using the following formulas:

$$
\begin{gathered}
x=-\frac{b}{2 a}, \text { and Vertex }=\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right) \text { for } y=a x^{2}+b x+c \\
\text { Vertex }=(h, k) \text { for } y=a(x-h)^{2}+k
\end{gathered}
$$

2. Axis of Symmetry

Every quadratic is symmetrical with respect to some vertical line called Axis of Symmetry. It is a line that passes through the vertex, so the equation of line of symmetry is given by:

$$
\begin{gathered}
x=-\frac{b}{2 a}, \text { for } y=a x^{2}+b x+c \\
x=h, \text { for } y=a(x-h)^{2}+k
\end{gathered}
$$

3. Y-intercept

A quadratic graph always cross the y-axis at a point given by co-ordinates $(0, f(0))$. The x-coordinate is zero and y co-ordinate can be found by plugging $x=0$ in quadratic equation
4. X-intercepts : roots, Zeros, Solutions

A quadratic equation may or may not touch x-axis. If it touches x-axis, it may touch x-axis at two points or only one points. These points are called x-intercepts. They can be found by solving quadratic equations.

THE KEY FEATURES OF A QUADRATIC FUNCTION

Examples:

Fill the following
Vertex \qquad
Axis of Symmetry \qquad
Y-intercept \qquad
X-intercepts \qquad

Fill the following
Vertex \qquad
Axis of Symmetry \qquad
Y-intercept \qquad

4 Graphing in Standard form: $y=a x^{2}+b x+c$

Example Graph $f(x)=y=2 x^{2}-2 x-4$
To find axis of symmetry:
$x=-\frac{b}{2 a}=$ \qquad $=$
To find vertex, plug back \qquad into \qquad
$f($ \qquad $)=2($ \qquad $)^{2}-2$ \qquad -4

$$
I
$$

$$
-
$$

Key features
$a=$ \qquad , $b=$ \qquad , $c=$ The graph opens UP \qquad or Down
\qquad
The graph has max \qquad or min \qquad
Vertex \qquad
Axis of Symmetry \qquad
Y-intercept \qquad
X-intercepts \qquad
\qquad

Example Graph $f(x)=y=-3 x^{2}-6 x+1$
To find axis of symmetry:
$x=-\frac{b}{2 a}=$ \qquad $=$
To find vertex, plug back \qquad into \qquad f(\qquad $)=-3(\ldots)^{2}-6$ \qquad $+1$

5 Graphing in Vertex form: $y=a(x-h)^{2}+k$

In this form the vertex is given by (h, k).
Example Graph $f(x)=y=2(x-3)^{2}-8$

To find axis of symmetry:

$x=h=$ \qquad
vertex: $(h, k)=$ \qquad

Example Graph $f(x)=y=-(x+3)^{2}+1$

To find axis of symmetry:

$x=h=$ \qquad
vertex: $(h, k)=$ \qquad

\qquad
$a=$ $k=$ The graph opens UP or min
Vertex
Y-intercept , $y=$
One point in Parabola : $(x=$
 _)
\qquad

6 Graphing in factored form: $y=a(x-p)(x-q)$

p and q are called \qquad , \qquad .
The axis of symmetry is given by formula

$$
x=\frac{p+q}{2} .
$$

Example Graph $f(x)=y=-2(x-3)(x-1)$

To find axis of symmetry:

$x=\frac{p+q}{2}=$ \qquad
To find vertex, plug back \qquad into \qquad $f($ \qquad $)=-2($ \qquad $-3)($ \qquad $-1)$

$a=$ \qquad , $p=$ \qquad , $q=$

Key features The graph opens UP \qquad or Down The graph has max \qquad or min \qquad
Vertex \qquad
Axis of Symmetry \qquad
Y-intercept \qquad X-intercepts
One point in Parabola : ($x=$ \qquad , $y=$ \qquad

Example Graph $f(x)=y=(x+1)(x-1)$

To find axis of symmetry:

$x=\frac{p+q}{2}=$ \qquad
To find vertex, plug back \qquad into \qquad $f($ \qquad) $=$ \qquad $+1)($ \qquad -1)

Key features
$a=$ \qquad , $p=$ \qquad , $q=$ \qquad
The graph opens UP \qquad or Down
The graph has max \qquad or min \qquad
Vertex \qquad
Axis of Symmetry \qquad
Y-intercept \qquad
X-intercepts
One point in Parabola : ($x=$ \qquad , $y=$ \qquad

