RIVER PARISHES COMMUNITY COLLEGE

Math 1100: College Algebra

QUADRATIC FUNCTIONS

5.1 Quadratic Functions and Parabolas

Semester Fall/Spring YEAR—- Department Physical Science: MATH

June 3, 2021

Learning Objectives

- In this section, you will learn:
- \clubsuit Recognize characteristics of parabolas
- \clubsuit Undertstand how the graph of a parabola is related to its quadratic function
- Determine minimum or maximum value (turning points) in a quadratic function's
- ♦ Solve problems involving a quadratic function's minimum or maximum value

1 Quadratic Equation

A quadratic equation is a polynomial equation with degree two. In other words, it is an equation of the form

$$ax^2 + bx + c = 0,$$

where a, b and c are real numbers and $a \neq 0$. The graph of a quadratic function is a U-shaped graph and is called **Parabolas**.

Examples of Quadratic equation

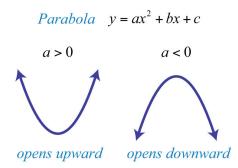
a. $x^{2} - 1 = 0$ b. $3x^{2} + 5x + 2 = 10$ c. $x^{2} = 4$ d. $\frac{3}{2}x^{2} + 7x = 5$

Examples of Non-Quadratic eunction

a. f(x, y) = 3x + 2y function of two Variables b. 0 = 3 + 2x The highest exponent (degree/power) is not 2 c. $0 = \sqrt{x} + 2$ radical (fractional) exponents. d. $0 = \frac{2}{x} + 3$ Variable in denominator e. $x^3 + 3x^2 + 9 = 0$ Third degree equation

2 Quadratic Forms

1. Standard (General) From				
	$y = ax^2 + bx + c$			
eg	2			
	$y = 2x^2 + 4x - 6$			
2. Vertex Form				
	$y = a(x-h)^2 + k$			
eg	$(1)^2$			
	$y = 2(x+1)^2 - 8$			
3. Factor Form				
	y = a(x-p)(x-q)			
eg	y = 2(x+3)(x-1)			
If $a > 0$, i.e. <i>a</i> is positive, parabola opens up. if $a < 0$, i.e. <i>a</i> is negative, parabola opens down.				
If $u < 0$, i.e u is negative, parabola opens down.				



3 Key Features of Quadratic function

1. Vertex

All quadratic have a **minimum** or **maximum** point which is also the **turning point** of the parabola. It is called the **vertex** of the parabola. The coordinates can be found using the following formulas:

$$x = -\frac{b}{2a}, \text{ and } \mathbf{Vertex} = \left(-\frac{b}{2a}, f(-\frac{b}{2a})\right) \text{ for } y = ax^2 + bx + c$$
$$\mathbf{Vertex} = (h, k) \text{ for } y = a(x - h)^2 + k$$

2. Axis of Symmetry

Every quadratic is symmetrical with respect to some vertical line called **Axis of Symmetry**. It is a line that passes through the vertex, so the equation of line of symmetry is given by:

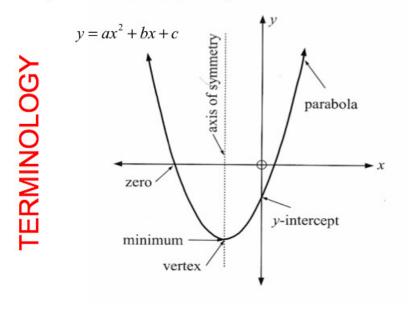
$$x = -\frac{b}{2a}, \text{ for } y = ax^2 + bx + c$$
$$x = h, \text{ for } y = a(x - h)^2 + k$$

3. Y-intercept

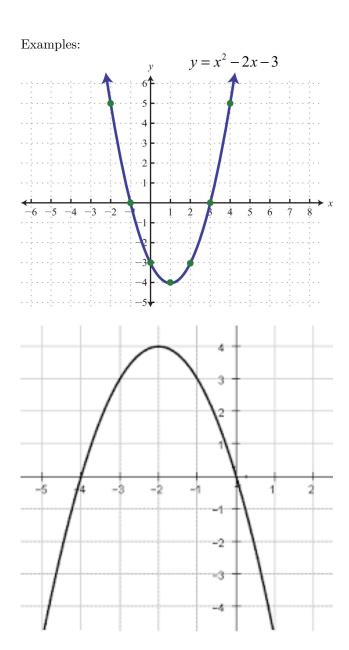
A quadratic graph always cross the y-axis at a point given by co-ordinates (0, f(0)). The x-coordinate is zero and y co-ordinate can be found by plugging x = 0 in quadratic equation

4. X-intercepts : roots, Zeros, Solutions

A quadratic equation may or may not touch x-axis. If it touches x-axis, it may touch x-axis at two points or only one points. These points are called x-intercepts. They can be found by solving quadratic equations.

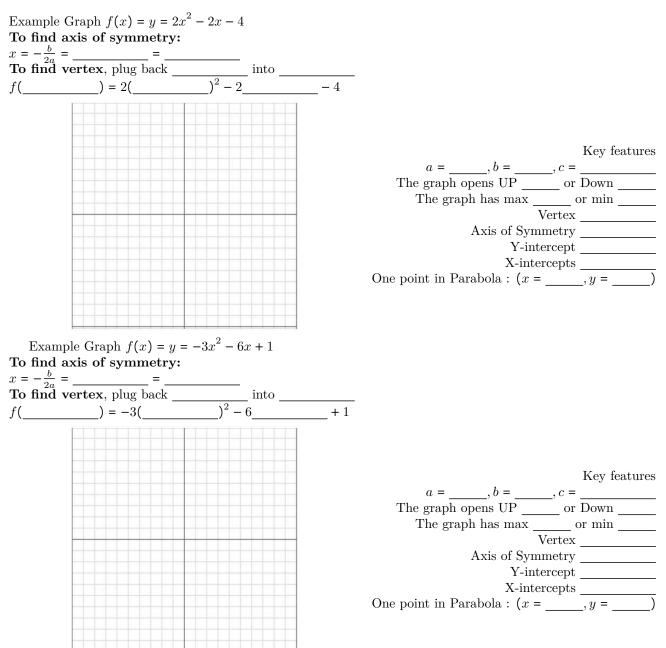


THE KEY FEATURES OF A QUADRATIC FUNCTION



Fill	the following
Vertex	
Axis of Symmetry	
Y-intercept	
X-intercepts	

Fill	the following
Vertex	
Axis of Symmetry	
Y-intercept	
X-intercepts	



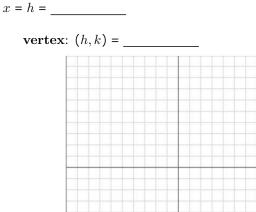
4 Graphing in Standard form: $y = ax^2 + bx + c$

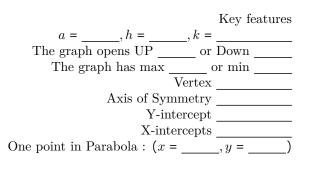
5 Graphing in Vertex form: $y = a(x - h)^2 + k$

In this form the vertex is given by (h, k).

Example Graph $f(x) = y = 2(x-3)^2 - 8$

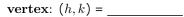
To find axis of symmetry: $\frac{1}{2}$





Example Graph $f(x) = y = -(x+3)^2 + 1$

To find axis of symmetry: x = h =_____



			1	111		
			_			
_				_	_	
 _		_		_		 -
			-			
_	-	_	-			
	_					

 $a = _, h = _, k = _$ The graph opens UP ____ or Down ____ The graph has max ____ or min ____ Vertex _____ Axis of Symmetry _____ Y-intercept _____ X-intercepts _____ One point in Parabola : $(x = _, y = __)$

Graphing in factored form: y = a(x - p)(x - q)6

 $x = \frac{p+q}{2}.$ Example Graph f(x) = y = -2(x-3)(x-1)To find axis of symmetry: $x = \frac{p+q}{2} = _$ To find vertex, plug back _____ into _____ $f(__) = -2(__-3)(__-1)$ Example Graph f(x) = y = (x + 1)(x - 1)To find axis of symmetry: $x = \frac{p+q}{2} = \underline{\qquad \qquad }$ To find vertex, plug back _____ into _____ $f(___) = (__+1)(__-1)$

Key features $a = \underline{\qquad}, p = \underline{\qquad}, q = \underline{\qquad}$ The graph opens UP _____ or Down _____ The graph has max _____ or min _____ Vertex _____ Axis of Symmetry _____ Y-intercept _____ X-intercepts One point in Parabola : $(x = __, y = __)$

